If it's not what You are looking for type in the equation solver your own equation and let us solve it.
100=10x^2
We move all terms to the left:
100-(10x^2)=0
a = -10; b = 0; c = +100;
Δ = b2-4ac
Δ = 02-4·(-10)·100
Δ = 4000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4000}=\sqrt{400*10}=\sqrt{400}*\sqrt{10}=20\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{10}}{2*-10}=\frac{0-20\sqrt{10}}{-20} =-\frac{20\sqrt{10}}{-20} =-\frac{\sqrt{10}}{-1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{10}}{2*-10}=\frac{0+20\sqrt{10}}{-20} =\frac{20\sqrt{10}}{-20} =\frac{\sqrt{10}}{-1} $
| 3x-4+0,2x=15+1,2x+21 | | 36-(3c+4)=2(c | | 13-z=8,z=4 | | a-1=6,a=8 | | 3(4x+4)=-4(2x-5)+3x | | x/7=85 | | (2/5)b+4=6 | | 30/5=h,h=6 | | 3{4x+5}=33 | | 8z=48,z=7 | | (2^x+10)/4=9/2^(x-2 | | 3(x-3)=15x-9-12x | | 248+m=259 | | 2(3x+1)=-5(3x-1)-4x | | 2(5x+5)=-3(3x-5)-4x | | 6n^2+19n-10=-3 | | 2x-10=3x-63 | | -6(9x+)-3x+4x=-408+x | | 8/i=1,i=8 | | -3+2/3x-1=1/3x-4 | | x+x+7=16,x=4 | | 2(2x+1)=-5(3x-3)-2x | | (.75x)-(.40)=1/2 | | 4(y+3)-7y=3y-8+3(y+0,66667) | | 3n+5=8(6-5n) | | 12+2n+12n=2(n+12) | | 4.9t^2-9.8t=14.7 | | d/6=3,d=18 | | (3/4)x-(2/5)=1/2 | | 2(2x+5)=-5(5x-3)-2x | | (.75)x-(2/5)=1/2 | | v-908=62 |